7 resultados para continuum model

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregation and caking of particles are common severe problems in many operations and processing of granular materials, where granulated sugar is an important example. Prevention of aggregation and caking of granular materials requires a good understanding of moisture migration and caking mechanisms. In this paper, the modeling of solid bridge formation between particles is introduced, based on moisture migration of atmospheric moisture into containers packed with granular materials through vapor evaporation and condensation. A model for the caking process is then developed, based on the growth of liquid bridges (during condensation), and their hardening and subsequent creation of solid bridges (during evaporation). The predicted caking strengths agree well with some available experimental data on granulated sugar under storage conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The traditional method of classifying neurodegenerative diseases is based on the original clinico-pathological concept supported by 'consensus' criteria and data from molecular pathological studies. This review discusses first, current problems in classification resulting from the coexistence of different classificatory schemes, the presence of disease heterogeneity and multiple pathologies, the use of 'signature' brain lesions in diagnosis, and the existence of pathological processes common to different diseases. Second, three models of neurodegenerative disease are proposed: (1) that distinct diseases exist ('discrete' model), (2) that relatively distinct diseases exist but exhibit overlapping features ('overlap' model), and (3) that distinct diseases do not exist and neurodegenerative disease is a 'continuum' in which there is continuous variation in clinical/pathological features from one case to another ('continuum' model). Third, to distinguish between models, the distribution of the most important molecular 'signature' lesions across the different diseases is reviewed. Such lesions often have poor 'fidelity', i.e., they are not unique to individual disorders but are distributed across many diseases consistent with the overlap or continuum models. Fourth, the question of whether the current classificatory system should be rejected is considered and three alternatives are proposed, viz., objective classification, classification for convenience (a 'dissection'), or analysis as a continuum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the strong coupling (SC) limit of the anisotropic Kardar-Parisi-Zhang (KPZ) model. A systematic mapping of the continuum model to its lattice equivalent shows that in the SC limit, anisotropic perturbations destroy all spatial correlations but retain a temporal scaling which shows a remarkable crossover along one of the two spatial directions, the choice of direction depending on the relative strength of anisotropicity. The results agree with exact numerics and are expected to settle the long-standing SC problem of a KPZ model in the infinite range limit. © 2007 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a continuum model describing data losses in a single node of a packet-switched network (like the Internet) which preserves the discrete nature of the data loss process. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that such a model exhibits strong fluctuations in the loss rate at the critical point and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process. The continuum model allows for rather general incoming data packet distributions and can be naturally generalized to consider the buffer server idleness statistics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting from a continuum description, we study the nonequilibrium roughening of a thermal re-emission model for etching in one and two spatial dimensions. Using standard analytical techniques, we map our problem to a generalized version of an earlier nonlocal KPZ (Kardar-Parisi-Zhang) model. In 2 + 1 dimensions, the values of the roughness and the dynamic exponents calculated from our theory go like α ≈ z ≈ 1 and in 1 + 1 dimensions, the exponents resemble the KPZ values for low vapor pressure, supporting experimental results. Interestingly, Galilean invariance is maintained throughout.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new interpretation for the Superpave IDT strength test based on a viscoelastic-damage framework. The framework is based on continuum damage mechanics and the thermodynamics of irreversible processes with an anisotropic damage representation. The new approach introduces considerations for the viscoelastic effects and the damage accumulation that accompanies the fracture process in the interpretation of the Superpave IDT strength test for the identification of the Dissipated Creep Strain Energy (DCSE) limit from the test result. The viscoelastic model is implemented in a Finite Element Method (FEM) program for the simulation of the Superpave IDT strength test. The DCSE values obtained using the new approach is compared with the values obtained using the conventional approach to evaluate the validity of the assumptions made in the conventional interpretation of the test results. The result shows that the conventional approach over-estimates the DCSE value with increasing estimation error at higher deformation rates.